Inital Commit

This commit is contained in:
Brett Woodruff
2024-06-10 12:24:37 -04:00
commit 106024bcb4
2223 changed files with 241071 additions and 0 deletions

View File

@@ -0,0 +1,6 @@
"""New retry v2 handlers.
This package obsoletes the botocore/retryhandler.py module and contains
new retry logic.
"""

View File

@@ -0,0 +1,132 @@
import logging
import math
import threading
from botocore.retries import bucket, standard, throttling
logger = logging.getLogger(__name__)
def register_retry_handler(client):
clock = bucket.Clock()
rate_adjustor = throttling.CubicCalculator(
starting_max_rate=0, start_time=clock.current_time()
)
token_bucket = bucket.TokenBucket(max_rate=1, clock=clock)
rate_clocker = RateClocker(clock)
throttling_detector = standard.ThrottlingErrorDetector(
retry_event_adapter=standard.RetryEventAdapter(),
)
limiter = ClientRateLimiter(
rate_adjustor=rate_adjustor,
rate_clocker=rate_clocker,
token_bucket=token_bucket,
throttling_detector=throttling_detector,
clock=clock,
)
client.meta.events.register(
'before-send',
limiter.on_sending_request,
)
client.meta.events.register(
'needs-retry',
limiter.on_receiving_response,
)
return limiter
class ClientRateLimiter:
_MAX_RATE_ADJUST_SCALE = 2.0
def __init__(
self,
rate_adjustor,
rate_clocker,
token_bucket,
throttling_detector,
clock,
):
self._rate_adjustor = rate_adjustor
self._rate_clocker = rate_clocker
self._token_bucket = token_bucket
self._throttling_detector = throttling_detector
self._clock = clock
self._enabled = False
self._lock = threading.Lock()
def on_sending_request(self, request, **kwargs):
if self._enabled:
self._token_bucket.acquire()
# Hooked up to needs-retry.
def on_receiving_response(self, **kwargs):
measured_rate = self._rate_clocker.record()
timestamp = self._clock.current_time()
with self._lock:
if not self._throttling_detector.is_throttling_error(**kwargs):
new_rate = self._rate_adjustor.success_received(timestamp)
else:
if not self._enabled:
rate_to_use = measured_rate
else:
rate_to_use = min(
measured_rate, self._token_bucket.max_rate
)
new_rate = self._rate_adjustor.error_received(
rate_to_use, timestamp
)
logger.debug(
"Throttling response received, new send rate: %s "
"measured rate: %s, token bucket capacity "
"available: %s",
new_rate,
measured_rate,
self._token_bucket.available_capacity,
)
self._enabled = True
self._token_bucket.max_rate = min(
new_rate, self._MAX_RATE_ADJUST_SCALE * measured_rate
)
class RateClocker:
"""Tracks the rate at which a client is sending a request."""
_DEFAULT_SMOOTHING = 0.8
# Update the rate every _TIME_BUCKET_RANGE seconds.
_TIME_BUCKET_RANGE = 0.5
def __init__(
self,
clock,
smoothing=_DEFAULT_SMOOTHING,
time_bucket_range=_TIME_BUCKET_RANGE,
):
self._clock = clock
self._measured_rate = 0
self._smoothing = smoothing
self._last_bucket = math.floor(self._clock.current_time())
self._time_bucket_scale = 1 / self._TIME_BUCKET_RANGE
self._count = 0
self._lock = threading.Lock()
def record(self, amount=1):
with self._lock:
t = self._clock.current_time()
bucket = (
math.floor(t * self._time_bucket_scale)
/ self._time_bucket_scale
)
self._count += amount
if bucket > self._last_bucket:
current_rate = self._count / float(bucket - self._last_bucket)
self._measured_rate = (current_rate * self._smoothing) + (
self._measured_rate * (1 - self._smoothing)
)
self._count = 0
self._last_bucket = bucket
return self._measured_rate
@property
def measured_rate(self):
return self._measured_rate

View File

@@ -0,0 +1,26 @@
class BaseRetryBackoff:
def delay_amount(self, context):
"""Calculate how long we should delay before retrying.
:type context: RetryContext
"""
raise NotImplementedError("delay_amount")
class BaseRetryableChecker:
"""Base class for determining if a retry should happen.
This base class checks for specific retryable conditions.
A single retryable checker doesn't necessarily indicate a retry
will happen. It's up to the ``RetryPolicy`` to use its
``BaseRetryableCheckers`` to make the final decision on whether a retry
should happen.
"""
def is_retryable(self, context):
"""Returns True if retryable, False if not.
:type context: RetryContext
"""
raise NotImplementedError("is_retryable")

View File

@@ -0,0 +1,114 @@
"""This module implements token buckets used for client side throttling."""
import threading
import time
from botocore.exceptions import CapacityNotAvailableError
class Clock:
def __init__(self):
pass
def sleep(self, amount):
time.sleep(amount)
def current_time(self):
return time.time()
class TokenBucket:
_MIN_RATE = 0.5
def __init__(self, max_rate, clock, min_rate=_MIN_RATE):
self._fill_rate = None
self._max_capacity = None
self._current_capacity = 0
self._clock = clock
self._last_timestamp = None
self._min_rate = min_rate
self._lock = threading.Lock()
self._new_fill_rate_condition = threading.Condition(self._lock)
self.max_rate = max_rate
@property
def max_rate(self):
return self._fill_rate
@max_rate.setter
def max_rate(self, value):
with self._new_fill_rate_condition:
# Before we can change the rate we need to fill any pending
# tokens we might have based on the current rate. If we don't
# do this it means everything since the last recorded timestamp
# will accumulate at the rate we're about to set which isn't
# correct.
self._refill()
self._fill_rate = max(value, self._min_rate)
if value >= 1:
self._max_capacity = value
else:
self._max_capacity = 1
# If we're scaling down, we also can't have a capacity that's
# more than our max_capacity.
self._current_capacity = min(
self._current_capacity, self._max_capacity
)
self._new_fill_rate_condition.notify()
@property
def max_capacity(self):
return self._max_capacity
@property
def available_capacity(self):
return self._current_capacity
def acquire(self, amount=1, block=True):
"""Acquire token or return amount of time until next token available.
If block is True, then this method will block until there's sufficient
capacity to acquire the desired amount.
If block is False, then this method will return True is capacity
was successfully acquired, False otherwise.
"""
with self._new_fill_rate_condition:
return self._acquire(amount=amount, block=block)
def _acquire(self, amount, block):
self._refill()
if amount <= self._current_capacity:
self._current_capacity -= amount
return True
else:
if not block:
raise CapacityNotAvailableError()
# Not enough capacity.
sleep_amount = self._sleep_amount(amount)
while sleep_amount > 0:
# Until python3.2, wait() always returned None so we can't
# tell if a timeout occurred waiting on the cond var.
# Because of this we'll unconditionally call _refill().
# The downside to this is that we were waken up via
# a notify(), we're calling unnecessarily calling _refill() an
# extra time.
self._new_fill_rate_condition.wait(sleep_amount)
self._refill()
sleep_amount = self._sleep_amount(amount)
self._current_capacity -= amount
return True
def _sleep_amount(self, amount):
return (amount - self._current_capacity) / self._fill_rate
def _refill(self):
timestamp = self._clock.current_time()
if self._last_timestamp is None:
self._last_timestamp = timestamp
return
current_capacity = self._current_capacity
fill_amount = (timestamp - self._last_timestamp) * self._fill_rate
new_capacity = min(self._max_capacity, current_capacity + fill_amount)
self._current_capacity = new_capacity
self._last_timestamp = timestamp

View File

@@ -0,0 +1,56 @@
"""Retry quota implementation.
"""
import threading
class RetryQuota:
INITIAL_CAPACITY = 500
def __init__(self, initial_capacity=INITIAL_CAPACITY, lock=None):
self._max_capacity = initial_capacity
self._available_capacity = initial_capacity
if lock is None:
lock = threading.Lock()
self._lock = lock
def acquire(self, capacity_amount):
"""Attempt to aquire a certain amount of capacity.
If there's not sufficient amount of capacity available, ``False``
is returned. Otherwise, ``True`` is returned, which indicates that
capacity was successfully allocated.
"""
# The acquire() is only called when we encounter a retryable
# response so we aren't worried about locking the entire method.
with self._lock:
if capacity_amount > self._available_capacity:
return False
self._available_capacity -= capacity_amount
return True
def release(self, capacity_amount):
"""Release capacity back to the retry quota.
The capacity being released will be truncated if necessary
to ensure the max capacity is never exceeded.
"""
# Implementation note: The release() method is called as part
# of the "after-call" event, which means it gets invoked for
# every API call. In the common case where the request is
# successful and we're at full capacity, we can avoid locking.
# We can't exceed max capacity so there's no work we have to do.
if self._max_capacity == self._available_capacity:
return
with self._lock:
amount = min(
self._max_capacity - self._available_capacity, capacity_amount
)
self._available_capacity += amount
@property
def available_capacity(self):
return self._available_capacity

View File

@@ -0,0 +1,50 @@
"""Special cased retries.
These are additional retry cases we still have to handle from the legacy
retry handler. They don't make sense as part of the standard mode retry
module. Ideally we should be able to remove this module.
"""
import logging
from binascii import crc32
from botocore.retries.base import BaseRetryableChecker
logger = logging.getLogger(__name__)
# TODO: This is an ideal candidate for the retryable trait once that's
# available.
class RetryIDPCommunicationError(BaseRetryableChecker):
_SERVICE_NAME = 'sts'
def is_retryable(self, context):
service_name = context.operation_model.service_model.service_name
if service_name != self._SERVICE_NAME:
return False
error_code = context.get_error_code()
return error_code == 'IDPCommunicationError'
class RetryDDBChecksumError(BaseRetryableChecker):
_CHECKSUM_HEADER = 'x-amz-crc32'
_SERVICE_NAME = 'dynamodb'
def is_retryable(self, context):
service_name = context.operation_model.service_model.service_name
if service_name != self._SERVICE_NAME:
return False
if context.http_response is None:
return False
checksum = context.http_response.headers.get(self._CHECKSUM_HEADER)
if checksum is None:
return False
actual_crc32 = crc32(context.http_response.content) & 0xFFFFFFFF
if actual_crc32 != int(checksum):
logger.debug(
"DynamoDB crc32 checksum does not match, "
"expected: %s, actual: %s",
checksum,
actual_crc32,
)
return True

View File

@@ -0,0 +1,531 @@
"""Standard retry behavior.
This contains the default standard retry behavior.
It provides consistent behavior with other AWS SDKs.
The key base classes uses for retries:
* ``BaseRetryableChecker`` - Use to check a specific condition that
indicates a retry should happen. This can include things like
max attempts, HTTP status code checks, error code checks etc.
* ``RetryBackoff`` - Use to determine how long we should backoff until
we retry a request. This is the class that will implement delay such
as exponential backoff.
* ``RetryPolicy`` - Main class that determines if a retry should
happen. It can combine data from a various BaseRetryableCheckers
to make a final call as to whether or not a retry should happen.
It then uses a ``BaseRetryBackoff`` to determine how long to delay.
* ``RetryHandler`` - The bridge between botocore's event system
used by endpoint.py to manage retries and the interfaces defined
in this module.
This allows us to define an API that has minimal coupling to the event
based API used by botocore.
"""
import logging
import random
from botocore.exceptions import (
ConnectionError,
ConnectTimeoutError,
HTTPClientError,
ReadTimeoutError,
)
from botocore.retries import quota, special
from botocore.retries.base import BaseRetryableChecker, BaseRetryBackoff
DEFAULT_MAX_ATTEMPTS = 3
logger = logging.getLogger(__name__)
def register_retry_handler(client, max_attempts=DEFAULT_MAX_ATTEMPTS):
retry_quota = RetryQuotaChecker(quota.RetryQuota())
service_id = client.meta.service_model.service_id
service_event_name = service_id.hyphenize()
client.meta.events.register(
f'after-call.{service_event_name}', retry_quota.release_retry_quota
)
handler = RetryHandler(
retry_policy=RetryPolicy(
retry_checker=StandardRetryConditions(max_attempts=max_attempts),
retry_backoff=ExponentialBackoff(),
),
retry_event_adapter=RetryEventAdapter(),
retry_quota=retry_quota,
)
unique_id = 'retry-config-%s' % service_event_name
client.meta.events.register(
'needs-retry.%s' % service_event_name,
handler.needs_retry,
unique_id=unique_id,
)
return handler
class RetryHandler:
"""Bridge between botocore's event system and this module.
This class is intended to be hooked to botocore's event system
as an event handler.
"""
def __init__(self, retry_policy, retry_event_adapter, retry_quota):
self._retry_policy = retry_policy
self._retry_event_adapter = retry_event_adapter
self._retry_quota = retry_quota
def needs_retry(self, **kwargs):
"""Connect as a handler to the needs-retry event."""
retry_delay = None
context = self._retry_event_adapter.create_retry_context(**kwargs)
if self._retry_policy.should_retry(context):
# Before we can retry we need to ensure we have sufficient
# capacity in our retry quota.
if self._retry_quota.acquire_retry_quota(context):
retry_delay = self._retry_policy.compute_retry_delay(context)
logger.debug(
"Retry needed, retrying request after delay of: %s",
retry_delay,
)
else:
logger.debug(
"Retry needed but retry quota reached, "
"not retrying request."
)
else:
logger.debug("Not retrying request.")
self._retry_event_adapter.adapt_retry_response_from_context(context)
return retry_delay
class RetryEventAdapter:
"""Adapter to existing retry interface used in the endpoints layer.
This existing interface for determining if a retry needs to happen
is event based and used in ``botocore.endpoint``. The interface has
grown organically over the years and could use some cleanup. This
adapter converts that interface into the interface used by the
new retry strategies.
"""
def create_retry_context(self, **kwargs):
"""Create context based on needs-retry kwargs."""
response = kwargs['response']
if response is None:
# If response is None it means that an exception was raised
# because we never received a response from the service. This
# could be something like a ConnectionError we get from our
# http layer.
http_response = None
parsed_response = None
else:
http_response, parsed_response = response
# This provides isolation between the kwargs emitted in the
# needs-retry event, and what this module uses to check for
# retries.
context = RetryContext(
attempt_number=kwargs['attempts'],
operation_model=kwargs['operation'],
http_response=http_response,
parsed_response=parsed_response,
caught_exception=kwargs['caught_exception'],
request_context=kwargs['request_dict']['context'],
)
return context
def adapt_retry_response_from_context(self, context):
"""Modify response back to user back from context."""
# This will mutate attributes that are returned back to the end
# user. We do it this way so that all the various retry classes
# don't mutate any input parameters from the needs-retry event.
metadata = context.get_retry_metadata()
if context.parsed_response is not None:
context.parsed_response.setdefault('ResponseMetadata', {}).update(
metadata
)
# Implementation note: this is meant to encapsulate all the misc stuff
# that gets sent in the needs-retry event. This is mapped so that params
# are more clear and explicit.
class RetryContext:
"""Normalize a response that we use to check if a retry should occur.
This class smoothes over the different types of responses we may get
from a service including:
* A modeled error response from the service that contains a service
code and error message.
* A raw HTTP response that doesn't contain service protocol specific
error keys.
* An exception received while attempting to retrieve a response.
This could be a ConnectionError we receive from our HTTP layer which
could represent that we weren't able to receive a response from
the service.
This class guarantees that at least one of the above attributes will be
non None.
This class is meant to provide a read-only view into the properties
associated with a possible retryable response. None of the properties
are meant to be modified directly.
"""
def __init__(
self,
attempt_number,
operation_model=None,
parsed_response=None,
http_response=None,
caught_exception=None,
request_context=None,
):
# 1-based attempt number.
self.attempt_number = attempt_number
self.operation_model = operation_model
# This is the parsed response dictionary we get from parsing
# the HTTP response from the service.
self.parsed_response = parsed_response
# This is an instance of botocore.awsrequest.AWSResponse.
self.http_response = http_response
# This is a subclass of Exception that will be non None if
# an exception was raised when retrying to retrieve a response.
self.caught_exception = caught_exception
# This is the request context dictionary that's added to the
# request dict. This is used to story any additional state
# about the request. We use this for storing retry quota
# capacity.
if request_context is None:
request_context = {}
self.request_context = request_context
self._retry_metadata = {}
# These are misc helper methods to avoid duplication in the various
# checkers.
def get_error_code(self):
"""Check if there was a parsed response with an error code.
If we could not find any error codes, ``None`` is returned.
"""
if self.parsed_response is None:
return
error = self.parsed_response.get('Error', {})
if not isinstance(error, dict):
return
return error.get('Code')
def add_retry_metadata(self, **kwargs):
"""Add key/value pairs to the retry metadata.
This allows any objects during the retry process to add
metadata about any checks/validations that happened.
This gets added to the response metadata in the retry handler.
"""
self._retry_metadata.update(**kwargs)
def get_retry_metadata(self):
return self._retry_metadata.copy()
class RetryPolicy:
def __init__(self, retry_checker, retry_backoff):
self._retry_checker = retry_checker
self._retry_backoff = retry_backoff
def should_retry(self, context):
return self._retry_checker.is_retryable(context)
def compute_retry_delay(self, context):
return self._retry_backoff.delay_amount(context)
class ExponentialBackoff(BaseRetryBackoff):
_BASE = 2
_MAX_BACKOFF = 20
def __init__(self, max_backoff=20, random=random.random):
self._base = self._BASE
self._max_backoff = max_backoff
self._random = random
def delay_amount(self, context):
"""Calculates delay based on exponential backoff.
This class implements truncated binary exponential backoff
with jitter::
t_i = min(rand(0, 1) * 2 ** attempt, MAX_BACKOFF)
where ``i`` is the request attempt (0 based).
"""
# The context.attempt_number is a 1-based value, but we have
# to calculate the delay based on i based a 0-based value. We
# want the first delay to just be ``rand(0, 1)``.
return min(
self._random() * (self._base ** (context.attempt_number - 1)),
self._max_backoff,
)
class MaxAttemptsChecker(BaseRetryableChecker):
def __init__(self, max_attempts):
self._max_attempts = max_attempts
def is_retryable(self, context):
under_max_attempts = context.attempt_number < self._max_attempts
retries_context = context.request_context.get('retries')
if retries_context:
retries_context['max'] = max(
retries_context.get('max', 0), self._max_attempts
)
if not under_max_attempts:
logger.debug("Max attempts of %s reached.", self._max_attempts)
context.add_retry_metadata(MaxAttemptsReached=True)
return under_max_attempts
class TransientRetryableChecker(BaseRetryableChecker):
_TRANSIENT_ERROR_CODES = [
'RequestTimeout',
'RequestTimeoutException',
'PriorRequestNotComplete',
]
_TRANSIENT_STATUS_CODES = [500, 502, 503, 504]
_TRANSIENT_EXCEPTION_CLS = (
ConnectionError,
HTTPClientError,
)
def __init__(
self,
transient_error_codes=None,
transient_status_codes=None,
transient_exception_cls=None,
):
if transient_error_codes is None:
transient_error_codes = self._TRANSIENT_ERROR_CODES[:]
if transient_status_codes is None:
transient_status_codes = self._TRANSIENT_STATUS_CODES[:]
if transient_exception_cls is None:
transient_exception_cls = self._TRANSIENT_EXCEPTION_CLS
self._transient_error_codes = transient_error_codes
self._transient_status_codes = transient_status_codes
self._transient_exception_cls = transient_exception_cls
def is_retryable(self, context):
if context.get_error_code() in self._transient_error_codes:
return True
if context.http_response is not None:
if (
context.http_response.status_code
in self._transient_status_codes
):
return True
if context.caught_exception is not None:
return isinstance(
context.caught_exception, self._transient_exception_cls
)
return False
class ThrottledRetryableChecker(BaseRetryableChecker):
# This is the union of all error codes we've seen that represent
# a throttled error.
_THROTTLED_ERROR_CODES = [
'Throttling',
'ThrottlingException',
'ThrottledException',
'RequestThrottledException',
'TooManyRequestsException',
'ProvisionedThroughputExceededException',
'TransactionInProgressException',
'RequestLimitExceeded',
'BandwidthLimitExceeded',
'LimitExceededException',
'RequestThrottled',
'SlowDown',
'PriorRequestNotComplete',
'EC2ThrottledException',
]
def __init__(self, throttled_error_codes=None):
if throttled_error_codes is None:
throttled_error_codes = self._THROTTLED_ERROR_CODES[:]
self._throttled_error_codes = throttled_error_codes
def is_retryable(self, context):
# Only the error code from a parsed service response is used
# to determine if the response is a throttled response.
return context.get_error_code() in self._throttled_error_codes
class ModeledRetryableChecker(BaseRetryableChecker):
"""Check if an error has been modeled as retryable."""
def __init__(self):
self._error_detector = ModeledRetryErrorDetector()
def is_retryable(self, context):
error_code = context.get_error_code()
if error_code is None:
return False
return self._error_detector.detect_error_type(context) is not None
class ModeledRetryErrorDetector:
"""Checks whether or not an error is a modeled retryable error."""
# There are return values from the detect_error_type() method.
TRANSIENT_ERROR = 'TRANSIENT_ERROR'
THROTTLING_ERROR = 'THROTTLING_ERROR'
# This class is lower level than ModeledRetryableChecker, which
# implements BaseRetryableChecker. This object allows you to distinguish
# between the various types of retryable errors.
def detect_error_type(self, context):
"""Detect the error type associated with an error code and model.
This will either return:
* ``self.TRANSIENT_ERROR`` - If the error is a transient error
* ``self.THROTTLING_ERROR`` - If the error is a throttling error
* ``None`` - If the error is neither type of error.
"""
error_code = context.get_error_code()
op_model = context.operation_model
if op_model is None or not op_model.error_shapes:
return
for shape in op_model.error_shapes:
if shape.metadata.get('retryable') is not None:
# Check if this error code matches the shape. This can
# be either by name or by a modeled error code.
error_code_to_check = (
shape.metadata.get('error', {}).get('code') or shape.name
)
if error_code == error_code_to_check:
if shape.metadata['retryable'].get('throttling'):
return self.THROTTLING_ERROR
return self.TRANSIENT_ERROR
class ThrottlingErrorDetector:
def __init__(self, retry_event_adapter):
self._modeled_error_detector = ModeledRetryErrorDetector()
self._fixed_error_code_detector = ThrottledRetryableChecker()
self._retry_event_adapter = retry_event_adapter
# This expects the kwargs from needs-retry to be passed through.
def is_throttling_error(self, **kwargs):
context = self._retry_event_adapter.create_retry_context(**kwargs)
if self._fixed_error_code_detector.is_retryable(context):
return True
error_type = self._modeled_error_detector.detect_error_type(context)
return error_type == self._modeled_error_detector.THROTTLING_ERROR
class StandardRetryConditions(BaseRetryableChecker):
"""Concrete class that implements the standard retry policy checks.
Specifically:
not max_attempts and (transient or throttled or modeled_retry)
"""
def __init__(self, max_attempts=DEFAULT_MAX_ATTEMPTS):
# Note: This class is for convenience so you can have the
# standard retry condition in a single class.
self._max_attempts_checker = MaxAttemptsChecker(max_attempts)
self._additional_checkers = OrRetryChecker(
[
TransientRetryableChecker(),
ThrottledRetryableChecker(),
ModeledRetryableChecker(),
OrRetryChecker(
[
special.RetryIDPCommunicationError(),
special.RetryDDBChecksumError(),
]
),
]
)
def is_retryable(self, context):
return self._max_attempts_checker.is_retryable(
context
) and self._additional_checkers.is_retryable(context)
class OrRetryChecker(BaseRetryableChecker):
def __init__(self, checkers):
self._checkers = checkers
def is_retryable(self, context):
return any(checker.is_retryable(context) for checker in self._checkers)
class RetryQuotaChecker:
_RETRY_COST = 5
_NO_RETRY_INCREMENT = 1
_TIMEOUT_RETRY_REQUEST = 10
_TIMEOUT_EXCEPTIONS = (ConnectTimeoutError, ReadTimeoutError)
# Implementation note: We're not making this a BaseRetryableChecker
# because this isn't just a check if we can retry. This also changes
# state so we have to careful when/how we call this. Making it
# a BaseRetryableChecker implies you can call .is_retryable(context)
# as many times as you want and not affect anything.
def __init__(self, quota):
self._quota = quota
# This tracks the last amount
self._last_amount_acquired = None
def acquire_retry_quota(self, context):
if self._is_timeout_error(context):
capacity_amount = self._TIMEOUT_RETRY_REQUEST
else:
capacity_amount = self._RETRY_COST
success = self._quota.acquire(capacity_amount)
if success:
# We add the capacity amount to the request context so we know
# how much to release later. The capacity amount can vary based
# on the error.
context.request_context['retry_quota_capacity'] = capacity_amount
return True
context.add_retry_metadata(RetryQuotaReached=True)
return False
def _is_timeout_error(self, context):
return isinstance(context.caught_exception, self._TIMEOUT_EXCEPTIONS)
# This is intended to be hooked up to ``after-call``.
def release_retry_quota(self, context, http_response, **kwargs):
# There's three possible options.
# 1. The HTTP response did not have a 2xx response. In that case we
# give no quota back.
# 2. The HTTP request was successful and was never retried. In
# that case we give _NO_RETRY_INCREMENT back.
# 3. The API call had retries, and we eventually receive an HTTP
# response with a 2xx status code. In that case we give back
# whatever quota was associated with the last acquisition.
if http_response is None:
return
status_code = http_response.status_code
if 200 <= status_code < 300:
if 'retry_quota_capacity' not in context:
self._quota.release(self._NO_RETRY_INCREMENT)
else:
capacity_amount = context['retry_quota_capacity']
self._quota.release(capacity_amount)

View File

@@ -0,0 +1,55 @@
from collections import namedtuple
CubicParams = namedtuple('CubicParams', ['w_max', 'k', 'last_fail'])
class CubicCalculator:
_SCALE_CONSTANT = 0.4
_BETA = 0.7
def __init__(
self,
starting_max_rate,
start_time,
scale_constant=_SCALE_CONSTANT,
beta=_BETA,
):
self._w_max = starting_max_rate
self._scale_constant = scale_constant
self._beta = beta
self._k = self._calculate_zero_point()
self._last_fail = start_time
def _calculate_zero_point(self):
scaled_value = (self._w_max * (1 - self._beta)) / self._scale_constant
k = scaled_value ** (1 / 3.0)
return k
def success_received(self, timestamp):
dt = timestamp - self._last_fail
new_rate = self._scale_constant * (dt - self._k) ** 3 + self._w_max
return new_rate
def error_received(self, current_rate, timestamp):
# Consider not having this be the current measured rate.
# We have a new max rate, which is the current rate we were sending
# at when we received an error response.
self._w_max = current_rate
self._k = self._calculate_zero_point()
self._last_fail = timestamp
return current_rate * self._beta
def get_params_snapshot(self):
"""Return a read-only object of the current cubic parameters.
These parameters are intended to be used for debug/troubleshooting
purposes. These object is a read-only snapshot and cannot be used
to modify the behavior of the CUBIC calculations.
New parameters may be added to this object in the future.
"""
return CubicParams(
w_max=self._w_max, k=self._k, last_fail=self._last_fail
)